
A Grid Based IMS Learning Design Player:
the ELeGI Case Study

Nicola CAPUANO a, b, 1, Roberto IANNONE a, Sergio MIRANDA b, c
and Marcello ROSCIANO a

a CRMPA, Centro di Ricerca in Matematica Pura ed Applicata, Italy
b DIIMA, University of Salerno, Italy

c MOMA, Modelli Matematici e Applicazioni, Italy

Abstract. This paper illustrates the work done and the results achieved within the
ELeGI project about the orchestration and the delivery of Learning Services lying
in the GRID inside an IMS Learning Design (IMS-LD) Unit of Learning and
running under an enhanced version of the CopperCore Player. The added value of
GRID technologies for the creation and the execution of dynamic learning
experiences is evidenced as well as the experimentation performed to overcome
the original IMS-LD limitation on running services is presented. The aim of the
ELeGI project is to promote and support a learning paradigm centred on the
knowledge construction using experiential based and collaborative learning
approaches in a contextualised, personalised and ubiquitous way through the
definition and implementation of a service oriented Grid based software
architecture.

Introduction

The aim of the ELeGI project is to promote and support a learning paradigm centred on
knowledge construction using experiential based and collaborative learning approaches
in a contextualised, personalised and ubiquitous way through the definition and
implementation of a service oriented Grid based software architecture.

In the context of the ELeGI project a new approach to the learning design web
service integration has been studied. It exploits the CopperCore architecture (engine
and player) in a distributed learning environment. This paper describes the realized
framework able to generalise the web service integration inside an IMS LD Player.

In Section 1 the ELeGI project and its goals are briefly described. Section 2
introduces the IMS Learning Design specification and the actual engine and player
implementation. CopperCore engine is described as well as the SLeD project, and the
actual limitations related to the web service integration issues. Eventually, Section 3
details the realised approach.

1 Corresponding Author: CRMPA, Centro di Ricerca in Matematica Pura ed Applicata, Università di

Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy; E-mail: ncapuano@unisa.it.

SWEL Workshop of Ontologies and Semantic Web Services for IES, AIED 2007 19

1. The ELeGI project

1.1. Objectives

The European Learning Grid Infrastructure (ELeGI) project [1], a EU-funded
Integrated Project, aims at promoting and supporting the adoption of a learning
paradigm focused on the construction and sharing of knowledge in high dynamic
contexts using experiential based and collaborative learning approaches in a ubiquitous,
contextualised, and personalised way and taking into account informal learning aspects
as well. To achieve these goals, ELeGI defines a clear strategy, formalized through the
definition of models (supporting formal and informal learning scenarios),
methodologies and technologies, enabling to overcome the drawbacks of traditional e-
Learning solutions and to advance the effective use of Technology Enhanced Learning
(TEL).

1.2. The ELeGI Learning Model

The Learning Model defined in the ELeGI project and fully described in [2] is
conceived in such a way to represent different pedagogical approaches and to allow the
automatic building and delivery of adaptive Unit of Learning (UoL) that can
dynamically change during the learning process according to the learner’s pedagogical
needs and preferences. The ELeGI Learning Model produces an operational process so
to create and deliver a UoL by using the structures defined by the three underlying
specific models: the Knowledge Model, the Learner Model and the Didactic Model.
The overall operational process can be divided into three processes, each one
addressing a specific phase: Knowledge building process, UoL building process and
UoL delivery process.

Unlike the traditional approaches to the creation of UoLs and/or learning courses,
the exploitation of the learning model offers several advantages. Actually, examining
current tools (IMS-LD tools, LAMS, etc.), a UoL can be considered as a static and
monolithic block, since once created, it is rather difficult to change or modify its inner
resources and/or to add/remove services and resources at run-time. Moreover, the
traditional approaches to create a UoL typically rely on expertises of the institutional
designer only, and have no capability to reuse existing blocks. Conversely, exploiting
the Grid technology and the virtualisation mechanism (by which each resource is
virtualised as a service), the ELeGI approach allows both to add dynamicity during the
UoL delivery, enabling the automatic search and late binding of resources and services,
and to reuse already developed building blocks (e.g. Ontologies, LEM, Didactic
Methods) during the UoL building. Thus, the benefits of the ELeGI approach, from the
reusability and pedagogical viewpoints, appear to be noticeable.

2. A Learning Design implementation

2.1. IMS Learning Design

The IMS Learning Design is a specification used to describe learning design scenarios.
It can describe a wide variety of pedagogical models, or approaches to learning,

SWEL Workshop of Ontologies and Semantic Web Services for IES, AIED 2007 20

including group work and collaborative learning. It does not define individual
pedagogical models, it provides instead a high level language, or meta-model, useful
to describe many different models. The language outlines how people perform
activities using resources (including contents and services), and how these three
components are coordinated into a learning flow.

The IMS Learning Design illustrates how a learning design scenario unfolds
making an analogy with a theatrical play. Just as a play can be staged by different
actors, in different theatres/places and changing props, so learning design scenarios can
be executed again by different learners and tutors, on different systems, with alternative
learning resources or tools:

! The play is presented in a series of acts, in which roles are played by those

actors taking part in it, for instance: learner, tutor, mentor, and so on.
! People playing the roles undertake a series of activities within an act. For a

learner these might include discussing with classmates about the merit of a
piece of source material. A tutor’s activity could be to remark on their
conclusions.

! Each role is presented together with its own learning objects (LO) and services
(e.g. communication tools) within an activity.

! An act is complete after all the activities of a specified role, or roles, are
finished. Alternatively, a time limit may be set, which determines an act to be
completed.

! As soon as an act is completed, the next one starts. The play finishes when all
the acts are complete, the learning design scenario finishes when all the plays
are complete.

The IMS Learning Design specifications are structured into three levels:

! Level A includes activities, roles and environments. Activities (learning

activities or support activities) can be grouped into activity structures and
executed into specific environments. An environment is composed of learning
objects and services provided to the users during the activity execution. Users
are classified into roles (learners, teachers, tutors, etc…). Learning objects are
educational contents by which learners acquire knowledge and services are
functionalities invoked during the learning process in order to communicate
with tutors or other learners.

! Level B adds properties (storing information about a single person or a
group) and conditions (setting constraints upon the flow of activities) to the
first level.

! Level C adds notifications (such a mechanism handling messages between
users) to the framework.

As observed in [3], even though IMS-LD presents a mechanism to personalize the

learning experience at run-time using properties and conditions at Level B, the
instructional designer has to provide a fixed set of learning objects and services in
which to select contents and tools for final users of the learning experience. So learning
objects nd services are statically bound to the learning design scenario.

SWEL Workshop of Ontologies and Semantic Web Services for IES, AIED 2007 21

2.2. CopperCore

CopperCore is the world’s first open source Learning Design engine capable to process
all three levels of IMS Learning Design. Released from Open Universiteit Nederland
(OUNL) it is not designed be used as a stand-alone learning environment but to be
integrated in a service oriented framework consisting of different services that are
combined to create a complete e-learning system. CopperCore architecture provides
three application program interfaces (APIs). The first provides access to validation; the
second to services; and the third provides the presentation aspects.

All the APIs are exposed using XML and can be called or manipulated externally
to provide file management and student management. This allows the separation of
content and services from the engine itself. The CopperCore system also provides a LD
player implemented as XSL style sheets applied to the transformed learning design.
The core implementation uses Java to provide the combining and integration code.

2.3. Service delivery inside the SLeD project

The SLeD project (Service Based Learning Design Player) [5] was the result of a
collaboration between the UK Open University (UKOU) and the OUNL and was
funded as part of the Framework and Tools strand of the JISC e-Learning Programme,
which is constructed around the concept of a service oriented architecture [6]. The
project was built on the CopperCore engine which validates Learning Design packages
to check if they conform to the specification, and if not, indicates the problem areas.

The objectives of the project were focuses on the extension of the available tools to
the Learning Design community and were also intended to further develop the way a
Learning Design approach might be practically realized within an institution. One of
the aim of the project was to extend and formalise the approach for integrating services
while maintaining the architectural integrity of the system. The Sled architecture is
shown in the figure 1.

The CCSI module is a layer that sits between the Sled (or other learning design)
player and the other LD services (for example the CopperCore engine, forums, search
etc). It provides a single point of contact thank to which the player may access all the
services, and also coordinates the communication between the services. For example,
with the QTI service, the CopperCore LD engine also needs to know the results from
the users’ test, so when the user submits his/her answers, CCSI will pass the
submission received from the user to the QTI engine, and then return the test results
back to the user and to the CopperCore engine. Communications between player and
services work due to the fact that the player is connected to CCSI by a set of predefined
methods (for each service used), the CCSI module then transforms/adapts this method
call to that actually expected by the service provider.

CCSI also handles the transformation of the information back from the service
provider to the player. In this way the player always knows the method to call and that
one it should expect back - no matter who is providing the actual service, it is a task of
the CCSI layer to ensure that the transformations take place correctly. For each type of
service (e.g. LD engine, forum, search) there is an adapter class which provides the
actual implementation and tranformations for the player to connect to these services.
Any parameters required by the adapters (for example URLs to web services) are
contained in a configuration file.

SWEL Workshop of Ontologies and Semantic Web Services for IES, AIED 2007 22

Figure 1. SLeD Architecture

2.4. Actual limitations

Even though the SLeD project has considerably improved the service integration into
IMS Learning Design player some drawback already persists.

In order to switch between service providers for which an adapter class is available,
e.g. to switch between a Google search provider and a MSN search provider, it is
necessary to manually modify an xml configuration file in the CCRT folder of the
CopperCore installation and then to restart CopperCore for the changes to take effect.
Furthermore it is possible only a single connection to a provider for a particular service
at a time. For example it could not have a Unit of Learning which uses a Google search
engine and another Unit of Learning configured to use MSN search.

Adding a new service type is more complicated than switching service providers.
The steps to carry out are the following:

! To think to the generic functions for the new service
! To code the adapter classes to connect up to the actual service provider.
! To update the player so that it will connect to the new service type.
! To create the interface the authors could use to write unit of learning that

embeds the new service.

3. Service delivery inside ELeGI IMS-LD Player

The ELeGI Software Architecture is presented in Figure 2. The Grid layer provides a
set of Infrastructure Services and other services to create and manage a Virtual
Organisation (VO) [8]. The Learning layer is mainly devoted to the execution of the
processes related to the Learning Model.

The Learning Services sub-layer, provides services and tools to support the
execution of the three processes of the Learning Model including the management of

SWEL Workshop of Ontologies and Semantic Web Services for IES, AIED 2007 23

Ontologies, the Learner Model, and the Didactic Model. The Personalization subsystem
aims at dynamically adapting and delivering educational contents and services,
matching learner’s needs and preferences according to his/her profile. The Learning
Experience Management subsystem allows to access and manage courses, modules,
and other learning experiences (e.g. allocating student, staff, etc.), while Contents &
Services Orchestration subsystem deals with the execution of the UoL, that are
described using the IMS-LD [4].

The Application Layer uses the services provided by the underlying layers, or their
composition, to implement applications in the e-learning domain. This layer includes a
key component of the ELeGI software architecture, IWT Grid Aware (IWT-GA) [9]
Portal that, according to the research on Grid portals, is designed exploiting the Web
Services for Remote Portlets (WSRP) specifications [10].

IWT-GA is the Grid version of Intelligent Web Teacher (IWT) learning platform
[11], it adopts the concept of portlets as a way to design user-centric portals that can be
dynamically adapted to the context.

IWT-GA holds an IMS-LD compliant engine and Player, a modified version of
Coppercore [12] that exploits the Contents&Services Orchestration subsystem services
of ELeGI, that is the subject of the following discussion.

3.1. Service implementation

To have a service running inside the EleGI LD Player is quite simple, indeed it only
needs to follow a few implementation specifications for the service development and
its deployment in the GRID. There is a loosely-coupled connection between the service
and the UoL or the Player that will run it, indeed no specific reference to the service, or
particular installation inside the player must be done, the only requirement is to specify
inside the IMS-LD learning activity the metadata of the required service.

In order to implement a new service or to extend an existing one, and made it
compliant with and fully executable within the IMS-LD Player here referenced to,
some APIs have been developed and made available.

The services must be a WSRF compliant GRID service (the WSRF.Net framework
which the University of Virginia Grid Computing Group has adopted) [16] in order to
maintain its state during the various phases of the execution.

By simply extending a class provided by the mentioned APIs, the service inherits
the state management logics and the methods useful to communicate with the LD
Player. A typical communication between the two parts can be summarized by two
classes of methods. In short, the Player uses a Setter method to pass to the service its
initialisation parameters and two methods to know the references of the service
delivery portlet to render. The service instead can use the Getter method to read the
parameters passed. All the methods can be overriden in the service if the default
implementation behavior is unsuitable, otherwise the simple class extension will be
sufficient.

It is important to assign in the code the right WSDL base name to the GRID
service, since the LD Player in order to communicate with every service needs to use a
general service proxy, therefore the methods to be reachable on the service must have a
fixed namespace.

SWEL Workshop of Ontologies and Semantic Web Services for IES, AIED 2007 24

Figure 2. The ELeGI Software Architecture

3.2. Services discovery and binding

The web service integration approach described in this paper is slightly different from
that adopted in SLeD architecture. The idea is to use a special xml configuration file
that follows the xml schema depicted in the figure 3.

The SLA element follows a schema that is an extension of the Web Service Level
Agreements (WSLA) standard [13]. WSLA specifications are agreements between a
service provider and a customer defining the obligations/duties of the parties involved
in it. Primarily, this is the obligation of a service provider to perform a service
according to agreed-upon guarantees for IT-level service parameters (such as
availability, response time and throughput) for Web Services, also specifying the
measures to be taken in case of deviation and failure and to meet the asserted service
guarantees (for example, a notification of the service customer).

This file represents a description of the service which includes the parameters it
needs, specified by “param” element in the schema, and the discovery method used to
retrieve the service. There are two implemented retrieving methods:

! Static address specification. Simply the service address specified in the

“address” attribute of the root element is used to instantiate it;
! Dynamic address specification. This method is adopted if the “address”

attribute is not specified. Then the “SLA” element is considered. This element
contains all the information needed to retrieve a service registered in a UDDI
repository.

The dynamic address specification needs that the desired service is registered using

GRASP, a Grid middleware developed in the frame of the homonymous FP5 project
[7], and successively re-factored in order to be WSRF compliant by exploiting the
WSRF.NET implementation of the University of Virginia Grid Computing Group.

The service description file can be inserted into the desired UoL as a learning
object within the learning activity where the service should be used. The ELeGI LD
Player (a modified version of the CopperCore Player) is used to parse the description

SWEL Workshop of Ontologies and Semantic Web Services for IES, AIED 2007 25

file. When in a UoL play the user reaches a learning activity that entails a service
support, the LD Player parses the file to search for retrieving the method to exploit.

If the static address specification method is to be used, the LD Player binds the
referenced service to the generic service proxy, otherwise it tries to locate and
instantiate the service using the GRASP middleware functionalities.

Figure 3. service description file XML schema

3.3. Services delivery

The main characteristic denoting the IMS-LD Player of the ELeGi project is the ability
to discover and run services at run-time (i.e. which are not known prior to the execution
of the UoL). Since those services are not installed under the same machine of the IWT-
GA Portal server and/or of the Player, but they can be deployed in different places of
the VO, the service GUIs are rendered in the Player as portlets through the WSRP.Net
implementation (developed in the context of the ELeGI project).

In Figure 4 are outlined the steps executed to render a portlet when a service is
delivered in the LD Player.

After that the service is instantiated, the LD Player reads the parameters specified
in the service description file and passes them to the service in order to initialize it with
all the values needed during the execution. Then the information required to render the
portlet are returned while a component called WSRP Consumer, in the LD Player, is
responsible to communicate with a WSRP Producer, referenced in the
GetWSRPProducerRef() method, in order to get the portlet markup and to render it.
The portlet communicates directly with the service to execute the business logic and
expose its GUI.

In order to illustrate the above discussion, the “Matchmaking service”, a support
service implemented in the EleGI project scenarios, will be used as an example. This
service provides a person search support for users that during a learning activity need
to look for a tutor or an expert with regard to a specific argument explained during the
learning experience.

SWEL Workshop of Ontologies and Semantic Web Services for IES, AIED 2007 26

 : Learner : LD Player : UoL : Learning Service : WSRP
Consumer

 : WSRP
Producer

executeService()

Request for a delivery of a
learning service within a
learning activity of the
Learning Design. The
specification of the
service are derived from the
metadata included in the
learning activity
environment.

extractServiceSpecifications(String, String)

setParameter(key, value)

getPortletRef()

gerWSRPProducer()

consumePortlet()

getMarkup()

The LD Player using the service
specification create an instance of
the learning service and set the
configuration parameters.

The LD Player using the
information about the returned
WSRP producer and portlet
reference ask the specific
portlet to the consumer.

The portlet comunicate
directly with the learning
service to execute the
business logic.

Figure 4. service delivery sequence diagram

Initially, a service description file embedded into the unit of learning (see example
in figure 5), is read. Since the address attribute is empty, the dynamic address
specification will be used so that all the information needed to retrieve the service URL
could be extracted from the SLA element (see the WSLA standard for a better
understanding [13]). Than some fixed parameters will be extracted from the “params”
section of the service description file; in the example the parameters of interest are
“filtered_search” where a value of “true” indicates a search not limited to the people
engaged in the same unit of learning of the user requesting the search. and
“type_of_role” where a value of “all” specifies to search for learner and/or teacher
roles.

Finally the GUI portlet (depicted in the figure 6) will be rendered by the client. It
allows to select the concepts and the knowledge level the searched people need to master.

4. Conclusions

In this paper has been presented an approach to integrate web service delivery inside a
IMS-LD player. Besides, a modified version of the CopperCore player has been
developed in the context of the ELeGI project in order to deliver, within a IMS-LD unit
of learning, some dynamically discovered web services exploiting the Grid
infrastructure.

The solution proposed seems to be flexible enough to theoretically allow also the
delivery of services implemented through the Java language. Indeed the service should
only implement an interface (defined in the APIs) and expose it via Web Service.
Furthermore, the WSRP Net Consumer implementation has demonstrated in the
interoperability tests to allow to consume portlets produced by Java implementations of

SWEL Workshop of Ontologies and Semantic Web Services for IES, AIED 2007 27

the WSRP specification. In the next future the experimentation work will proceed
towards this direction.

Figure 5. service description file for the Matchmaking service

References

[1] M. Gaeta, P. Ritrovato, S. Salerno. Making e-Learning a Service Oriented Utility: The European
Learning Grid Infrastructure Project. chapter for the book: Towards the Learning GRID: advances in
Human Learning Services, IOS Press, ISBN: 1-58603-534-7, pp. 63-75, 2005

[2] G. Albano, M. Gaeta, S. Salerno. E-learning: a model and process proposal. To appear in International
Journal of Knowledge and Learning, 2005.

[3] N. Capuano, M.Gaeta, R. Lannone, F. Orciuoli. Learning Design and run-time resource binding in a
distributed e-learning environment, in Proc. of the 1st International Kaleidoscope Learning Grid SIG
Workshop on Distributed e-Learning Environments, Vico Equense (Napoli), Italy, BCS Pub, March
2005.

SWEL Workshop of Ontologies and Semantic Web Services for IES, AIED 2007 28

Figure 6. Matchmaking portlet inside the LD Player

[4] IMS Global Learning Consortium, IMS Learning Design v1.0 Final Specification, available at
http://www.imsglobal.org/learningdesign/index.cfm, 2003.

[5] Service Based Learning Design Player, available at http://sled.open.ac.uk/web/.
[6] The JISC e-Learning programme, available at

http://www.jisc.ac.uk/whatwedo/themes/elearning/programme_elearning.aspx
[7] T. Dimitrakos, M. Gaeta, G. Laria, et al.. An Emerging Architecture Enabling Grid Based Application

Service Provision. Proc. of 7th IEEE Int. Conf. EDOC, Brisbane, Australia, pp. 240-250, 2003.
[8] Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual Organizations.

International Journal of Supercomputer Applications, vol. 15, no. 3, pp. 200-222, 2001.
[9] N. Capuano, A. Gaeta, G. Laria, F. Orciuoli, P. Ritrovato. How To Use GRID Technology for

Building Next Generation Learning Environments. chapter for the book: Towards the Learning GRID:
advances in Human Learning Services, ISBN: 1-58603-534-7, pp 182-192, 2005.

[10] T. Schaeck, R. Thompson: Web Services for Remote Portlets (WSRP) Whitepaper, 28 may 2003.
Available at http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp

[11] Intelligent Web Teacher, available at http://www.didatticaadistanza.com/.
[12] CopperCore The IMS Learning Design Engine, available at http://coppercore.sourceforge.net/
[13] Web Service Level Agreements (WSLA) Project, available at http://www.research.ibm.com/wsla/
[14] M. Weller, A. Little, P. McAndrew, W. Woods. Learning Design, generic service descriptions and

universal acid. Educational Technology & Society, 9 (1), 138-145, 2006.
[15] P. McAndrew, W.I.S. Woods, A. Little, M.J. Weller, Rob Koper, Hubert Vogten. Implementing

Learning Design to support web-based learning, available at
http://ausweb.scu.edu.au/aw04/papers/refereed/mcandrew/

[16] WSRF.NET, available at http://www.cs.virginia.edu/~gsw2c/wsrf.net.html

SWEL Workshop of Ontologies and Semantic Web Services for IES, AIED 2007 29

