MANAGEMENT OF LATENT LEARNING NEEDS IN ADAPTIVE E-LEARNING SYSTEMS

NICOLA CAPUANO, SAVERIO SALERNO
University of Salerno

GIUSEPPINA RITA MANGIONE, ANNA PIERRI
Centre for Research in Pure and Applied Mathematics

3rd International Workshop on Adaptive Learning via Interactive, Collaborative and Emotional approaches
July 3-5, 2013, Taichung, Taiwan

Kindly Presented by: ANIELLO CASTIGLIONE

Adaptive Learning Systems

• They provide individualized instruction for each learner
• They are able to generate personalized courses taking into account:
 – the learning goals to be achieved
 – the existing knowledge of each learner
 – the learning style of each learner
 – the context where the learning takes place

• In past researches we defined and experimented an adaptive learning system named IWT (Intelligent Web Teacher)
How IWT Works

- Starting from a formal representation of a teaching domain through concept graphs
- A teacher selects a learning goal for a target student
- The system generates a personalized sequence of concepts to be taught
- Concepts already known by the target student are removed
- Learning resources are then selected according to student’s learning style
- Concepts learnt by a student are maintained in structures named learner models
- That are updated after each testing activity

Improvements Made So far

- We improved IWT by providing self-regulated learning features

- To do that we have added the possibility to generate a course starting from an explicit request made by a learner
 - A learner specifies his/her learning needs in natural language
 - Sentence similarity algorithms are applied to find the best matching concept(s) from available domains
 - A personalized course is generated starting from best matching concepts
Aim of This Work

• To improve IWT to let it generate a personalized course starting form an **implicit request** rather than from an explicit one

• **Motivations**

 – To anticipate and **spread needs**, knowledge and learning paths

 – To serve as a pedagogical **advance organizer** for the learners’ community

 – To support the development of **self-regulated** learning

Methodology

• A methodology to **recommend learning goals** has been defined

• It consists of the following steps:

 – **Concept mapping**: for each learner, known concepts plus concepts currently under learning are identified

 – **Concept utility estimation**: for each learner, the utility of each unknown concept is estimated

 – **Learning Goals Suggestion**: concepts with the greater utility for each learner are suggested to him

 – **Course Building**: if the learner selects one or more concepts among those suggested, the system generates a course covering them
Concept Utility Estimation

- For each learner, the utility of unknown concepts is estimated
 - A collaborative component calculates the concept utility basing on what similar learners know
 - Learners with similar learner models are identified
 - Unknown concepts that are known by similar learners are recommended

![Diagram of target learner and similar learner with recommendation arrows and numbered concepts]

Concept Utility Estimation

- For each learner, the utility of unknown concepts is estimated
 - A cognitive component calculates the concept utility basing on the analysis of the learner model of the target learner
 - Known concepts are identified on available concept graphs
 - Concepts that complement current knowledge are recommended

![Diagram of target learner, concept graphs, and recommendation arrows with numbered concepts]
Hybridization

- **Collaborative approaches**
 - Provide less obvious advice allowing **serendipity**: the chance to discover useful things even if they differ from one’s preferences
 - Inaccurate recommendations when few data is available (**cold start problem**) e.g. in the early days of life of a system

- **Cognitive approaches**
 - First useful recommendations are available **immediately**, with only one assessment made by the user
 - Basing only on the user’s **past history** the recommendations tend to follow his preferences too closely and do not allow serendipity

- **Applied Solution**
 - **Hybridize** the two approaches to sum advantages and mitigate drawbacks

Latent Factor Model

- Utilities of concepts for learners are stored into a huge **data matrix**
- The maintenance of such matrix can decrease **performances**
- A **latent factor model** is applied to factorize the data matrix as a product of two compressed matrices
The Prototype

- Once the learning goal has been selected the corresponding course is generated and delivered
The Prototype

We also introduced **sharing and rating** functions allowing learners to:

- Create own learning goals by selecting concepts from available ontologies
- Share self-created learning goals with other learners
- Rate learning goals created by teachers or other learners

Architecture

IWT e-Learning System

- Learning Goals Recommander
- Learning Goals Selector
- Learning Goals Designer
- Learning Goals Sharing and Rating Services
- Learning Goals Indexer
- Learning Goals Manager
- Application Services

IWT Framework

Developed components
Experimentation

- **Participants:**
 - 61 students of an online University course on Software Engineering

- **Groups:**
 - The experimental group was enabled to use the “personal learning need panel” to let the system suggest adequate complementary topics
 - The control group studied the standard course within the IWT environment

- **Purpose:**
 - To estimate perceived validity of the additional functions
 - To estimate system usability
 - To evaluate improvements on knowledge acquisition

- **Perceived Validity:**
 - Many students have found the recommender system useful for their study (M=6.21, SD=2.02, Md=6).
 - Most of them agreed that recommended learning goals correctly complement topics studied within the course (M=6.17, SD=2.37, Md=6).

- **Usability:**
 - SUS score of 53.97 on a range between 0 and 100

- **Quantitative Evaluation:**
 - Two open questions evaluated by a teacher

<table>
<thead>
<tr>
<th>Questions</th>
<th>Experimental group</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 1</td>
<td>M=6.11, SD=1.87, Md=6</td>
<td>M=5.84, SD=1.31, Md=6</td>
</tr>
<tr>
<td>Question 2</td>
<td>M=7.81, SD=1.28, Md=8</td>
<td>M=7.32, SD=1.24, Md=7</td>
</tr>
<tr>
<td>Overall</td>
<td>M=6.96, SD=1.57, Md=7</td>
<td>M=6.58, SD=1.27, Md=6</td>
</tr>
</tbody>
</table>
Conclusions

• We defined a methodology to recommend learning goals basing on similarities between users and on models representing teaching domains.

• A prototype component was developed and integrated within an existing e-learning system.

• Experimentation results have shown that:
 – the students liked the tool and found it interesting and useful to complement their knowledge about topics under study.
 – in line with the prototypical nature of the system, the usability was not a barrier when using it.
 – grades obtained by students of the experimental group were slightly higher with respect to those belonging to the control group.

• Future work will focus mainly on the improvement of the usability.

Thanks for Your Attention

This research is partially supported by the European Commission under the Collaborative Project ALICE “Adaptive Learning via Intuitive, interactive, collaborative, Emotional system”, 7th Framework Program, Theme ICT-2009.4.2, Grant Agreement n. 257639

www.aliceproject.eu